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Flow simulations in porous media involve
a wide range of strongly coupled scales. The
length scale of short and narrow channels is
on the order of millimeters, while the size of
a simulation domain may be several kilome-
ters (the richest oil reservoir in Saudi Ara-
bia, Ghawar, is 280 km ×30 km). The per-
meability of rock formations is highly het-
erogeneous and may span several orders of
magnitude, from nearly impermeable barri-
ers to high-permeable flow channels. For
such complex systems fully resolved simula-
tions become computationally intractable. To
address this problem we developed the new
Multilevel Multiscale Mimetic (M3) method
[1]. This method posseses several distinctive
features that lead to more reliable, robust,
and efficient simulations of subsurface flows:

Upscaled model. Using the same math-
ematical model with averaged parameters
to perform simulations at a much coarser
scale does not adequately capture the influ-
ence of the fine-scale structure. In contrast,
the M3 method constructs a hierarchical se-
quence of coarse-scale models, which pro-
vides a framework to capture fine-scale ef-
fects more accurately.

Multilevel hierarchy. Many different model
upscaling approaches have been proposed
(cf. [2, 3]). All of these methods, except the
Multilevel Upscaling (MLUPS) method [3],
consider a two-level structure: coarse- and
fine-scale grids. Using a two-level structure
most multiscale methods achieve a coarsen-
ing factor of approximately 10 in each co-

The absolute permeability, K, of the 68th layer in
an SPE benchmark model (left). Locations of the
injector (×) and the producers (◦) (right).

The water saturation in the two-phase immiscible
flow model after 880 days with injection of 200 ft3

of water per day. The multiscale solution (right)
preserves important features of the fine-scale so-
lution (left). The pressure equation was solved
on 7× 2 and 220× 60 meshes, respectively. The
speed up of the pressure solver is 60 times.

ordinate direction, while the trends in fine-
scale realizations of large reservoirs require a
coarsening factor of 100 or more. Using the
multilevel hierarchy of the M3 method we
achieve large coarsening factors with small
computational cost.

Locally conservative velocity field. A mul-
tilevel framework was developed in the
MLUPS method, but this approach does not
produce conservative velocity fields. This
is a crucial requirement for modeling two-
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phase flows, as these are described by a cou-
pled system of equations for pressure (ellip-
tic) and water saturation (hyperbolic). The M3

method provides locally conservative veloc-
ity fields on all scales, which guarantees local
mass conservation.

Algebraic nature. We merge two computa-
tional strategies which were never used for
two-phase flow simulations before. The first
strategy is the algebraic coarsening devel-
oped by Y.Kuznetsov that reduces the de-
grees of freedom inside a coarse-grid cell [4].
The second is a novel approach to conser-
vative coarsening of velocities on the edges
of a coarse-grid cell. These complimentary
strategies ensure that the coarse-scale system
has the same sparsity structure as the fine-
scale system, which naturally leads to a mul-
tilevel algorithm. Due to its algebraic nature,
themethod can be adapted to other fine-scale
discretizations, such as the Mixed Finite El-
ement and Finite Volume methods, and can
handle full permeability tensors and general
polygonal meshes.

Conservative coarsening. The conservative
coarsening procedure is defined by veloc-
ity coarsening parameters. These parame-
ters play a critical role in the accuracy of
the M3 method. We implement a block-
box, problem-dependent, and computation-
ally inexpensive strategy to estimate them.
In most multiscale methods the specific pa-
rameters that define the coarsening proce-
dure are computed at the initial time step,
with high accuracy, and are not changed dur-
ing the simulation. Our numerical exper-
iments demonstrate that it is important to
update these parameters in time, even with
moderate accuracy. Thus, we propose to up-
date our velocity coarsening parameters a
few times during the simulation (e.g., every
500 time steps) using an efficient algebraic
multigrid algorithm with a modest conver-
gence tolerance. With this update strategy
the error in the M3 solution is comparable to

the error in the fine-scale solution.
TheM3method has been applied to the up-
scaling benchmark from the 10th SPE Com-
parative Solution project. We simulated flow
in the fluvial layer shown in the top Figure
(left) with the five-spot well configuration
shown in the top Figure (right). The perme-
ability field has large channelized structures,
which is a challenging problem for multi-
scale methods. To discretize this system in
time we use the IMPES time discretization
scheme (IMplicit Pressure and Explicit Sat-
uration). The saturation is updated using
the Darcy velocities provided by the pressure
solver.
The numerical results demonstrate that
with a large coarsening factor, such as 30, the
M3 solution is close to the fine-scale solution,
see bottom Figure. In other numerical tests
for larger problems we implement more ag-
gressive coarsening with a factor of 64, and
also observe good agreement with the fine-
scale solution. The M3 method speeds up
the pressure solver up to 80 times, and the
overall simulation 8 times, with respect to
the fine-scale simulation.
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